
CS 839:
Systems
Veri0cation
Lecture 1
Tej Chajed

Welcome to CS 839, Systems Veri4cation!

My name is Tej. You can and should call me
Tej. It rhymes with "page". You don't need to
say "Professor".

Task: 'll out
your name tent
First name, in ALL CAPS
Pronouns, if you like
Write on both sides

5min

Write one name only, whatever you want
people to call you

–

Write pronouns to the side–

Write on both sides, for people next to
you

–

Introduce yourself
to your "pod"

Name, grad/undergrad,
year

–

What's your go-to
comfort food OR
favorite pizza topping?

–

What's the last
programming project
you worked on?

–

10min

Who am I?
started in 2023–

research is on verifying systems–

hobbies include cooking, cycling,
reading, social deception games

–

my comfort food is aloo paratha, favorite
pizza topping is probably ricotta cheese

What is this
class about?
"program proofs" = code + speci1cation
+ proof

In this you'll learn to verify programs: prove
they do what they're intended to do.

Most of this class is about learning how to
state what a program does, and how to
prove that a program does that thing.

Today we'll cover the broader motivation,
what it means to do veri>cation, and some
details about how the class works.

Success story:
veri.ed
cryptography

security critical–

clear speci.cation–

hard to test–

hard to .x bugs–

Formal methods have been used on
software that is really deployed and used.
Some high-pro:le examples include
CompCert, a veri:ed C compiler and seL4,
a veri:ed microkernel. The example I'll use
is veri:ed cryptography that was deployed
in Chrome - a similar project was used for
veri:ed cryptography in Mozilla Firefox.

Success story: Fiat Crypto
in Google Chrome
code: addition on numbers, six 48-bit
representation

spec: (a + b) mod 2 −255 19

Cryptography turned out to be a good 0t for veri0cation. Modern encryption is based on
something called an elliptic curve - all you need to know for the purpose of this
explanation is that you have something that looks like a number and you need to
implement operations like adding two numbers and scaling a number by a constant.
However, there are several constraints: 0rst, the implementation must be very fast. Second,
for security the code must take the same time regardless of the input. Third, in order to get
high performance, you have to write custom code for each architecture the code is
deployed to.

The alternative to veri0cation was extensive manual review by experts: once per
combination of architecture and elliptic curve. This was both unscalable and error-prone.
Testing is inadequate because the bugs are in corner cases; the behavior for one number
isn't the same as another, and a motivated attacker will 0nd the inputs that are buggy.

The speci0cation here is extremely clear: the math that de0nes elliptic curve is a handful of
equations, even though the code is very complex.

One note about this project: Google used Fiat Crypto in the Chrome browser, but they
actually didn't deploy it on their servers because it still had a tiny performance cost. Two
big differences: one, 1% more for encryption is a noticeable cost for Google on the server,
and second, deploying bug 0xes to the client is much harder (or impossible) compared to
servers which can be updated in under an hour.

Systems we might
want to be correct

operating systems–

network stack–

cryptography–

distributed, replicated storage–

web browser–

Why should we care about software
correctness? Especially important for
systems software, which supports many
applications, and if there's a bug in the
system it's likely to impact many
applications and users.

In these cases, worth putting more effort
into validating the software.

Big questions this
class is about

How do we know a program is correct
beyond testing?

1.

What does it mean for a program to be
"correct"?

2.

How can we reason about concurrency and
handle all possible executions?

3.

"how do we know" is also "how do we convince
others"

The main question of the class is the 7rst one: how
do we get mathematical certainty of a program's
correctness, beyond the standard approach of
testing it on a number of inputs. Embedded in this
question is also a broad philosophical question
about the nature of proof; while we won't explore
this in depth, we will give highly rigorous proofs
(machine-checked) that can be a standard for any
other proofs you think about.

Example:
hashmap
why is Load correct without acquiring
the lock?

how do you know?

how do you convince someone?

type HashMap struct {
 clean *atomic.Pointer[map[K]V]
 mu *sync.Mutex
}

func (h *HashMap) Load(key K) (V,
bool) {
 clean := h.clean.Load()
 value, ok := clean[key]
 return value, ok
}

// Clone the input map by copying all
values.
func mapClone(m map[K]V) map[K]V {
... }

func (h *HashMap) Store(key K, value
V) {
 h.mu.Lock()
 dirty := mapClone(h.clean.Load())
 dirty[key] = value
 h.clean.Store(dirty)
 h.mu.Unlock()
}

2min time to stare at the code and think
about it

Active learning

You will be active in class. This will include
thinking (without me talking), writing,
talking to a partner or your pod, and sharing
with the class.

Research shows that active learning
improves learning outcomes, but it
decreases the perception of learning.

Exercise:
correctness
of binary
search
5min convince yourself

10min combine
arguments with your pod

8min share-out

Exercise

Note to self: the code has some bugs. Line 6
should be < and not <= (easy to 9nd with
testing). Signed (i + j) / 2 is incorrect if
exceeding 2 .

Precondition that list is sorted.

5min convince yourself–

10min combine arguments with your pod–

8min share-out

23min total

–

63

Why take this
class?

emerging (eld–

math + engineering–

veri(cation mindset–

active learning?–

Emerging)eld with exciting new developments.

Combination of math + engineering - that's what got me excited
about it. You may)nd this fun. It's certainly a change from normal
systems classes, it's not AI, and it's also different from theory in
both the way we do the math and the applications.

Will influence how you think about any complex software: what is
its speci)cation? Can you even imagine a proof that it meets the
spec? Can you try to test it?

If you want to do research in this area, this class is intended to be
great preparation. Being able to use these powerful techniques
lets you tackle almost anything, even if others can't.

Hopefully it's fun! Especially the active learning is intended to
make the class engaging.

Future of
veri+cation

Distributed storage–

Web browsers–

Operating systems (and hypervisors
and containers)

–

This is an emerging ,eld. Let me give a couple areas where I think
veri,cation could reach.

Amazon S3: has a simple speci,cation, great internal complexity, not
losing customer data is very high priority. Amazon is interested in and
developing tools for proving parts of it.

Browsers: browsers are critical infrastructure that allow us to safely
runs lots of untrusted code. There are a few scattered efforts to verify
buggy and approachable parts of the browser, but a more
comprehensive effort seems well deserved if it could be sustainable.

Operating systems (plus other isolation mechanisms like hypervisors
and containers): when running systems software, we use isolation
containers like the OS, hypervisors, and Docker/Kubernetes. These are
also trusted and critical pieces of infrastructure. Similar to browsers,
can we verify they provide the intended isolation?

Making reliable software

category approaches

post-deployment beta testing, bug reporting

social code review, pair programming

methodological testing, version control, style checking

technological static analysis, fuzzing, property-based testing

mathematical type systems, formal veri<cation

Spectrum of approaches you might take to making software reliable.

Many of these are good software engineering practice but not routinely
practiced or discussed in computer science curriculum.

Let me highlight a couple and what they're good at.

Post deployment: rare bugs that depend on con<guration or user behavior
might only be found in deployment. Automated bug reporting is excellent
for <nding and <xing crash bugs especially (or anything easily detected).
Using beta testing and staged deployment mitigates the cost of such bugs
to a smaller population. (See CrowdStrike which did not do this.)

Testing: testing is great! it's low effort and high reward

Formal veri5cation: if you have a concurrent or distributed system that's
responsible for storing user data, proving the correctness of your program
on all inputs might actually be the most ef<cient way to get suf<cient
con<dence.

Reliability requires a
spectrum of
approaches

Less formal techniques are less expensive–

Even a formal argument has holes–

did you prove the right thing?–

do your assumptions match reality?–

Not a tradeoff: should use multiple approaches.

Keep in mind the goal: how much effort you put into
reliability and how you achieve it depends on your goals and
what would go wrong if you had a bug.

If the consequences are minimal OR you could quickly
respond with bug >xes (eg, website UI), might be worth
relying on bug testing rather than thorough testing. If testing
is too dif>cult BUT bugs are consequential, might have
thorough code reviews. In a distributed systems, bugs can be
hard to trigger in testing but have big impact in production;
for a storage system the consequence might be lost data and
thus worth putting large effort into preventing.

Veri%cation
code + spec + proof

All veri(cation involves code, a speci(cation of the intended behavior of the
code, and a proof that shows the code meets the spec.

The proofs in this class will be interesting compared to proofs you've done
so far because we'll write them in a computer, and a program called an
interactive theorem prover will check the proofs (and help us write it in the
(rst place). This might seem unrelated to program veri(cation, and in a way
it is - we could instead prove the correctness of programs the same way we
prove theorems in math, on paper. However, program veri(cation deserves
the higher assurance of machine-checked proofs because the proofs will
have many more details than a typical mathematical proof, and it's easy to
overlook a case or premise that needs to be proven. Since the entire goal
was to have reliable software, we don't want to shift "is my program
correct?" to "is my proof correct?". Furthermore, doing the entire thing in a
computer will allow a much tighter connection to the code we run, so we
make sure to capture all the behaviors of the code we wrote rather than
something abstract on paper.

How this class works
Read lecture notes1.

Come to lecture, do in-class work, ask
questions

2.

Do the assignments3.

Use of?ce hours and Piazza when stuck4.

You need to do the work to get anything out of this class. Do the
reading so you're ready to participate in lecture. Come ready to
work on exercises (sometimes on paper, sometimes in Rocq),
with your peers. Do the assignments, and ask for help when
stuck.

You need to put some time into the assignments to get anything
out of this class. I'm giving flexibility in the assignments, but you
need to work on them each week to Dnish them. The time is also
there for you to ask when you get stuck.

The software we use is experimental and you won't Dnd all the
answers in the notes or online. I think this is a valuable
experience, even though I also strive to make the notes as useful
as possible.

Norms

Be curious and
present

–

Create a safe space
for being wrong

–

Actively participate–

Working
agreements

Use names–

Start and end on time–

Limit electronics–

Ask questions in lecture. After today, lecture will be
less structured, have a lot more demos. Time
management is my job, not yours. I may take your
question offline or defer the answer either if it's a
longer discussion or I'm not sure about the answer.

Come prepared for class: read the lectures notes
ahead of time as much as possible (I intend for
them to be ready ~1 week in advance), and/or make
progress on the assignment. Be present and ready
to learn. Eat breakfast/lunch, sleep, do whatever
you need to do to be awake and alert.

Who are
you?
Fill out

 on paper or
Google Forms

background
survey

8min

https://forms.gle/M9Z1ZnSDsZDNYJZk9

What's next
Lecture 2: Rocq Prover
Get started on Assignment 1 (at least
setup)

Next Tuesday we'll get started with learning
the Rocq Prover. I strongly encourage you
to get a head start on assignment 1 - at
least get the setup done.

