
CS 839: Systems Verification

Lecture 18: Lock invariants
Learning outcomes

Understand how concurrent separation logic extends sequential
separation logic

1.

Recall the rules for using lock invariants2.

Concurrent separation logic
Semantics is different, so need new soundness theorem1.
Need a rule for 2. spawn
What else do we need to verify real programs?3.

Definition (CSL soundness): For some pure (a Prop), if
 and , then if

is an expression then is not stuck, or for
some value and holds. Furthermore, no thread in is
stuck in .

Φ(v)
P e λv Φ(v){ } { } ([e], h) ⇝tp ([e] +′ +T , h)′ e′

([e] +′ +T , h)′ e =′ v′

v′ Φ(v)′ T

h′

Exercise: soundness for spawned threads
Suppose we said (T, h) is stuck only if no threads could take a step.

What does soundness say now?

What program and specification would be true now that wasn't
before?

Reasoning about spawn

wp(e, T rue) ∗ P spawn e; e Q{ } ′ { }
P e Q{ } ′ { }

This rule is actually just framing P around the call to spawn, but it's
easier to follow how this would work.

Note that the wp(e, _) here can only be used once - it's not a Hoare
triple.

Intuition behind CSL: resources are split and transferred to other
threads. Similar to how we sent resources to function calls, except
this time both the spawned thread and the following code are
running; with a function we waited for it to finish before proceeding.

Code demo

Locks (sync.Mutex)
// a zero sync.Mutex is an unlocked mutex
func (m *sync.Mutex) Lock()
func (m *sync.Mutex) Unlock()

Lock invariants

R m :={ } NewMutex () isLock(m, R){ }

isLock(ℓ , R) Lock ℓ R{ m } m { }
isLock(ℓ , R) ∗ R Unlock ℓ T rue{ m } m { }

Exercise: mutex invariant
Suppose we could get (note
the same mutex). What would go wrong?

isLock(ℓ, R) ∗1 isLock(ℓ, R)2

More code demo

