CS 839: Systems Verification
Lecture 18: Lock invariants
Learning outcomes

1. Understand how concurrent separation logic extends sequential
separation logic

2. Recall the rules for using lock invariants




Concurrent separation logic

1. Semantics is different, so need new soundness theorem

2. Need a rule for spawn
3. What else do we need to verify real programs?




Definition (CSL soundness): For some pure ®(v) (a Prop), if
{P} e {\ ®(v)}and([e],h) ~> ([€'] +T, h'), thenif €’

is an expression then ([e] 44T, h') is not stuck, or &’ = v’ for
some value v’ and ®(v') holds. Furthermore, no thread in T' is
stuck in h'.




Exercise: soundness for spawned threads

Suppose we said (T, h) is stuck only if no threads could take a step.

What does soundness say now?

What program and specification would be true now that wasn't
before?




Reasoning about spawn

. me@
{wp(e, True) = P} spawne; e {Q}

This rule is actually just framing P around the call to spawn, but it's
easier to follow how this would work.

Note that the wp(e, _) here can only be used once - it's not a Hoare
triple.



Intuition behind CSL: resources are split and transferred to other
threads. Similar to how we sent resources to function calls, except
this time both the spawned thread and the following code are
running; with a function we waited for it to finish before proceeding.



Code demo




BOCKSH sync .Mutex |}




Lock invariants

{R} m := NewMutex () {isLock(m, R)}

{isLock(4,,, R)} Lock{,, {R}
{isLock(¢,,, R) * R} Unlock ¢,, {T'rue}




Exercise: mutex invariant

Suppose we could get isLock(¢, Ry) * isLock(¢, Rs) (note
the same mutex). What would go wrong?




More code demo




