
CS 839 Systems Verification
Lecture 4: Abstraction

Learning outcomes
Separate implementation from abstraction1.
Extract an abstraction from an informal description2.

What is the abstraction of a queue?
Think about both state and operations (enqueue, dequeue,
isEmpty).

Warmup exercise: how would you formalize what a queue data
structure does?

Queue Abstract Data Type
state: list V

enqueue(v) op: changes state from xs to xs ++ [v]

dequeue() op: changes state from x :: xs to xs and returns
x (errors if empty?)

isEmpty() : returns true iff state is []

What should the behavior of dequeue be on an empty queue? This
is a matter of choice: we could consider it an error and throw an
exception, we could simply not specify it (allowing undefined or
arbitrary behavior), or we could have dequeue return a boolean
indicating success.

Benefits of abstraction

Ask whole class to list some things

Some ideas if not mentioned:

hide the implementation details; easier to understand how to use it
allow multiple implementations based on hardware, performance
needs
allow changing the implementation in the future
teamwork: separate working on implementation vs client
better reuse: find a generic component and use it for multiple
things
maybe more amenable to testing than alternatives (easily isolated)

Stack Abstract Data Type
state: list V

push(v) op: changes state from xs to v :: xs

pop() op: changes state from x :: xs to xs and returns x
(errors if empty?)

Another ADT with different semantics is the stack. Similar to the
queue, this interface permits a variety of implementations.

Example: the file-system abstraction

The file system provides an abstraction of the storage (typically a disk). The state is
something like a tree of directories, containing files, with metadata associated with
directories and files (timestamps, permissions), and files containing bytes.

It's a bit more complicated in that there are special files (symbolic links, devices). Hard
links complicate the model, too; we need a notion of the physical identity of a file
(almost requiring inodes) so that two links can point to the same underlying file.

The operations include things like open, which creates a file-descriptor in the calling
process - so we need to also talk about processes to fully describe the state.

That's just state. The operations are a bit simpler; it's easy to develop a mental model
of what readdir, read, and write do, as well as open flags and unlink.

This abstraction hides significant implementation complexity, especially indirect
blocks to support large files, tracking free inodes and blocks, and journaling to make
the implementation crash safe.

Example: The process abstraction

Processes are also an abstraction provided by the OS. They're a bit
more complicated to describe as state + operations, in that the
fundamental thing a process does is execute code, seemingly
arbitrary CPU instructions. However, it also has special system
calls that behave more like the abstractions above; these all are
high-level abstractions on top of the lower-level primitives in the
OS.

5-min break

Activity: formalization of Hanabi

Why are we doing this? It's a fun way to practice abstraction and
formalization. We will take a written explanation - which in this case
are game rules that are supposed to be complete since you need to
follow the rules by hand - and turning it into something abstract
and precise.

Hanabi is a cooperative game where players take turns making
moves to complete five stacks of cards in order. The catch is that
you cannot see your cards, only those of others, and there are rules
for how you can give people hints about their cards.

The goal is to play the numbers 1--5 of each color (white, blue, red, yellow,
green), in order. When every card has been drawn, the game gives one
more round and then ends; you score a point for every card you have
played.

Players take turns. On your turn you do one of the following:

Give a hint to another player. A hint might be "these cards are 1's" or
"these cards are all yellow". You must point out all the cards matching the
description. You must specify exactly one number or exactly one color in
your hint. You cannot give 0-number hints, e.g., "none of your cards are
3's". Hints cost tokens, of which there are a limited number.
Play a card. If the card is playable (that is, it is the next number in one of
the color stacks), then put it in the right place. If it isn't, discard the card and
lose a life. If you complete a stack (that is, play a five correctly), then you
regain a hint token.
Discard a card. This regains a hint token.

Task: describe the abstract
state machine of Hanabi
Too much to do in 30min

Focus on describing the play action

Example: modeling Tic-tac-toe

location: {

row: int // [0, 2]

col: int // [0, 2]

}

player := black | white

cell := empty | full(p: player)

current_player: state -> player

game_over: state -> Prop

full or someone won

full: forall l, s(l) = full(_)

move: state -> state -> Prop

not(game_over(s))

exists l, s(l) = empty /\ exists (p: player),

p = current_player(s) /
s' = s[l := full(p)]

