
CS 839 Systems Verification
Lecture 5: Hoare logic

this lecture will be on the board, this is just the plan / my notes

Learning outcomes
Explain what pre- and post-conditions mean1.
Formally analyze a "whiteboard" programming language2.

The Big Idea

"if we run in a state satisfying and it terminates, then will
be true of the final state"

{P } e {Q}

e P Q

Some more details
semantics: what happens when we run ?– e

logic: set of rules for proving – {P } e {Q}
soundness: are those rules correct?–

The goal:

We want to reason about functions like these. euclid involves
recursion, so that's one tricky thing to handle. The other
interesting aspect is that we use mod inside euclid. The goal
will be that the proof of euclid uses the proof of mod, saving
us work.

Key principle of Hoare logic
Proof structure mirrors code structure
euclid is recursive -> proof by induction

euclid calls mod -> proof of euclid uses proof of mod as a
lemma

Syntax

Semantics

Activity: explain how to read these

Activity: add sums to language

5-min break

Program proofs without any techniques

example: mod above

mod(a, b) := a - (a / b) * b

maybe easy, but what about recursion?

euclid(a, b) := if b == 0 then a else
euclid(b, mod(a, b))

Scaling up
Now imagine verifying some assembly
code using the official semantics

_start:
 mov r6, #0 // Initialize
accumulator r6 to 0
 mov r0, #0 // Initialize counter
r0 to 0
 mov r1, #10 // Set upper limit to
10

loop:
 add r6, r6, r0 // Add current counter
value to accumulator
 add r0, r0, #1 // Increment counter
 cmp r0, r1 // Compare counter
with limit (10)
 ble loop // Branch if counter
<= 10

 // At this point, r6 contains the sum:
0+1+2+3+4+5+6+7+8+9+10 = 55

https://developer.arm.com/documentation/dui0231/b/arm-
instruction-reference/arm-general-data-processing-
instructions/add--sub--rsb--adc--sbc--and-rsc?lang=en

https://developer.arm.com/documentation/dui0231/b/arm-
instruction-reference/conditional-execution?lang=en

The point is that we want to abstract away behavior and create
modular reasoning principles that divide up the effort.

Hoare logic
{P } e {λv. Q(v)}

Soundness: what does
a Hoare triple mean?
{P } e {λv. Q(v)}

∀v , P ∧′ (e ⇝ v) ⟹′ Q(v)′

Proof system

Logic rules

Exercise: prove pure step

Run into a problem: need determinism

