CS 839 Systems Verification
Lecture 6: Hoare logic (part 2)

this lecture benefits from projecting the slides



Learning outcomes

1. Prove reasoning principles in Hoare logic
2. Analyze pre- and post-conditions



Quiz: what is soundness?
{P}e{lw.Q(v)}

e —* e/ execution relation

5 MIN



Answer

{P}e{ . Q(v)}
Vo', P A (e »*v') = Q)



Other "soundness" definitions

Task: commit to reasonable or not, then discuss in pairs the
ones you disagree on

1. Vo', P A (e =*v') = Q(v') (original)

2. P = e =" v ANQWV)

8. PA(W,e—="v = Q(v))

4. P — (e =" V')A (W,e =" v = Q"))
5., (PNhe—*v) = Q(V)

10 MIN for think-pair, 10 MIN for debrief
commit to reasonable/not reasonable
discuss which ones you disagree on
Answers:

original definition

one path is correct

nonsense: says precondition holds and postcondition holds
unconditionally

total correctness

nonsense: always true (says there exists such that an implication holds; if
the exists makes the left-hand side of the implication false, automatically
holds)

4 definitely reasonable, 2 is probably not, 3 and 5 definitely not



5-min break



Proof system

{P} e; {\.Q(v)} Yov.{Q(v)} es]v/x| {R}
{P} let x := e; in ey {R}

hoare-let

Example: verify directly against soundness

5 MIN



Exercise: Rule of consequence

prove this rule from the definition of soundness

P'EP (V0.Q(v)FQ'(v)) {P}e{Q(v)}
{P'} e {\v.Q'(v)}

consequence

10 MIN (think-pair, whole group discussion)



Bonus exercise: prove pure step

e1 > ez {P} e {.Qv)}
1P} e {Av.Q(v)}

pure-step

Need determinism as a lemma, but then the rule makes sense



Example specs

and = \by, by. if b; then b, else false {True} and by by {Xv.v =b; &by}
add = Az,y.x +y {n+m < 2%} add am {\.v =n+m}

min = )‘way~ ifr < Yy then z else Yy {True} min nm {M.3(p:Z).v =pAp<nAp<m}

Things to note: and has a reasonably strong specification, add

has a too-strong precondition, min has an under-specified
postcondition

5 MIN



Exercise: alternate specifications

1. What is a stronger specification for min ?
2. Can you generalize the spec for add ?
3. Can you generalize the spec for and ? (tricky)

and = Aby, by. if by then b, else false {True} and by by {Mv.v = by &by}
add = \z,y. ¢+ y {n+m <29} add am {Mv.v =n+m}
min = Az, y.if z < y then z else y {True} min nm {M.3(p:Z).v=pAp<nAp<m}

10 MIN



Verifying a function
f=Az.add (min0z) 1

n<2% -1}
fn
{A.3(p: Z).v=pAp <1}



Recall: rule of consequence

PFP (V0.Q()F Q) {P}e{Q)}
{P'} e {Av.Q'(v)}

consequence

This rule is important for adapting Hoare triples as needed.
Allow us to prove the strongest specification we care to and
then keep using it, without having to revisit that proof.



Proof outlines

{n<2% -1}
{True}

let m := min 07 in
{Fpm-m =D AP < 0OA P, <n}
{m+1<2%}

let y :=add m1in
{y:m+1}

Y
{y=pm +1Ap,+1<1}
{83(p:Z).y=pAp<1)}

Need to recall our (under-specified) min spec and our add spec

15 MIN



Better soundness
{P}e{v.Qv)} =
If P holds and e —* €/, either

— (a) € is not stuck OR
— (b) there is a value v’ ¢’ = v' and Q(v") holds.



