
CS 839 Systems Verification
Lecture 7: Separation Logic (part 1)

this lecture will be mostly on the board



Learning outcomes
Appreciate why reasoning about pointers is hard1.
Reason about separation logic predicates2.



Recap
Hoare logic: pre and post conditions, soundness



Pointers are hard
type list struct {
  X    int
  Next *list
}

x := &list{X: 2, Next: nil}
y := &list{X: 3, Next: x}
z := &list{X: 10, Next: &list{X: 2, Next: 
nil}}
// x = [2], y = [3, 2], z = [10, 2]

func f(l *list) { ... }

x := ... // setup from earlier
f(x)
// what is true here?

What might be true now?

3 MIN think about it

Example of framing: calling function could modify any reachable
pointer



Separation logic: an overview
semantics: add a heap

predicates: language to describe the heap

logic: new ways of reasoning

Syntax/semantics: add pointers and heap allocation

Predicates: need to describe heap as well as variables

Logic: new ways of reasoning, slightly new soundness theorem



Syntax and semantics
syntax: ,  (load),  (store)

semantics needs heap: loc -> option val

alloc e !ℓ ℓ ← v

(e, h)  > (e , h )′ ′



Propositional logic
syntax:

entailment:  (not a proposition)

P ::= P ∧ Q ∣ P ∨ Q ∣ ¬P ∣ P → Q ∣ ∃x. P (x) ∣
∀x. P (x) ∣ x = y

P ⊢ Q



Proofs in propositional logic

Let's be precise about how to prove properties - easy enough
right now, but more complicated when we get to separation
logic

Example: prove AND commutes, P ∧ Q ⊢ Q ∧ P



5-min break



Heap predicates
Need a language of heap predicates

hProp := heap → Prop



Predict: soundness theorem
Recall semantics now looks like 

Write down soundness definition for 

(e, h)  > (e , h )′ ′

P : heap → Prop

{P } e {λv. Q(v)}



Answer: soundness of separation logic

If  holds and  then

{P } e {λv. Q(v)}

P (h) (e, h)  > (e , h )′ ′

(1)  is not stuck– (e , h )′ ′

(2)  and  holds– e =′ v′ Q(v )(h )′ ′



Separation logic propositions

(where  is a normal proposition)

P ::= ℓ ↦ v ∣ P ∗ Q ∣ emp

∣ φ ∣ P ∨ Q ∣ ∀x. P (x) ∣ ∃x. P (x)

φ



"  points to "

ℓ ↦ v
ℓ v

True for exactly one heap: the one where l maps to v and
nothing else is allocated.

(definition: use dom for heap domain)



"  and separately "

P ∗ Q
P Q

The key to separation logic is the separating conjunction.

(definition: use  for disjoint)⊥



Derived rules
where  means P ⊢ Q ∀h. P (h) → Q(h)



Exercise: prove sep-monotone-left
We have a "right" version, what about the "left"?



Exercise: draw some heaps
(assume ,  are distinct)ℓ1 ℓ2

1. ℓ ↦1 ℓ ∗2 ℓ ↦2 ℓ1
2. ℓ ↦2 3 ∗ ℓ ↦1 ℓ ∗2 ℓ ↦3 ℓ2
3. ℓ ↦3 ℓ ∗4 ℓ ↦2 ℓ ∗2 ℓ ↦1 3


