CS 839 Systems Verification
Lecture 7: Separation Logic (part 1)

this lecture will be mostly on the board



Learning outcomes

1. Appreciate why reasoning about pointers is hard
2. Reason about separation logic predicates



Recap

Hoare logic: pre and post conditions, soundness



Pointers are hard

type list struct {
X int
Next *list

}

&list{X: 2, Next: nil}
&list{X: 3, Next: x}

% g
y :
z
nil}}
// x =1[2], y =1[3, 2], z = [10, 2]

3 MIN think about it

&list{X: 10, Next: &list{X: 2, Next:

func f(1 *1list) { ... }
X := ... // setup from earlier
f(x)

// what is true here?

What might be true now?

Example of framing: calling function could modify any reachable

pointer



Separation logic: an overview

semantics: add a heap
predicates: language to describe the heap

logic: new ways of reasoning

Syntax/semantics: add pointers and heap allocation
Predicates: need to describe heap as well as variables

Logic: new ways of reasoning, slightly new soundness theorem



Syntax and semantics

syntax: alloc e, 4 (load), £ < v (store)

semantics needs heap: loc -> option val

(e;h) > (€', h)



Propositional logic

syntax:
P:=PANQ|PVQ|—-P|P—Q|3z.P(x) |
Ve.P(z) |z =1y

entailment: P = () (not a proposition)



Proofs in propositional logic

PFQ PFR
PFQAR

PAQFP PAQFQ

V. (P F Q(x))

l-int
PFVz.Q(z) 00

V. (P(z) F Q)

9. P(z) - Q exists-elim

Let's be precise about how to prove properties - easy enough
right now, but more complicated when we get to separation
logic

Example: prove AND commutes, P A Q - Q AN P



5-min break



Heap predicates

Need a language of heap predicates

hProp := heap — Prop



Predict: soundness theorem

Recall semantics now looks like (e, h) > (€', h')

P : heap — Prop
Write down soundness definition for { P} e {\v. Q(v)}



Answer: soundness of separation logic
{P}e{rv.Q(v)}
If P(h) holds and (e, h) > (€', h') then

- (1) (¢/, ') is not stuck
- (2) € = v' and Q(v")(R’) holds



Separation logic propositions
P:=/¢—uv|PxQ |emp
o | PV Q|Ve. P(z) | Jx. P(x)

(where @ is a normal proposition)



{— v

"¢ points to v"

True for exactly one heap: the one where | maps to v and
nothing else is allocated.

(definition: use dom for heap domain)



P x Q)

"P and separately ("

The key to separation logic is the separating conjunction.

(definition: use _L for disjoint)



Derived rules
where P = @Q means Vh. P(h) — Q(h)

PxQFQx*P
Px(Q*R)F(P*Q)*R
(Jz. P(x)) * Q F (Jx. P(x) * Q)

{— v*{— wt False
P Pxemp

sep-comm
Sep-assocC
sep-exists
pointsto-sep

sep-id



Exercise: prove sep-monotone-left

We have a "right" version, what about the "left"?

Q- Q
PxQF P*Q'

sep-monotone



Exercise: draw some heaps
(assume ¢1, ¢ are distinct)
1-61 l%fg*fg Hgl

2-62%3*61%62*&5%(2
3-63%54*@2'-)62*£1|—>3



