
CS 839: Systems Verification
Lecture 8: Separation Logic (part 2)

this lecture will be mostly on the board

Learning outcomes
Appreciate why separation logic works1.
Be ready to think in separation logic2.

Recall: meaning of
Write down the definition from memory

P ∗ Q

Answer
(P ∗ Q)(h) ≜ ∃h , h . (h =1 2 h ∪1 h) ∧2 (h ⊥ h) ∧1 2

P (h) ∧1 Q(h)2

Recall: separation logic predicates
ℓ ↦3 ℓ ∗4 ℓ ↦2 ℓ ∗2 ℓ ↦1 3

Separation logic rules

Now we get to the program logic part of separation logic,
reasoning about actual programs.

Frame rule

Key to separation logic

Recall how in regular Hoare logic, we would prove a
specification for a function, then use it whenever needed by
adapting the pre- and post-condition with the rule of
consequence.

The frame rule lets us reason about a function over a "small
footprint" and then use it in a larger heap. It shows that in the
larger context, the function doesn't modify "anything else."

Illustrative
example of framing
suppose we've proven

{ℓ ↦1 } f(ℓ , ℓ) {ℓ ↦0 1 2 1 }42

Proof outline for eown

Rewrite the code (in "A-normal form") to put !x and !y onto their
own lines, so the proof outline can be written clearly.

Exercise: prove swap correct

5-min break

Magic wand
P −∗ Q

There is another separation logic operator that turns out to be
useful to mechanize proofs in Rocq: the "magic wand", or more
formally the "separating implication".

Intuition for magic wand

Consider the Prop equivalent to get a sense for this as a form
of implication, but with separating conjunction rather than
regular conjunction

Characterization of magic wand

Exercise: defining magic
wand in the model
"if we extend the heap with P, then we get Q"

Answer
(P −∗ Q)(h) ≜ ∀h , (h ⊥′ h) ∧′ P (h) ⟹′ Q(h ∪ h)′

Properties of wand

Wand implication

Extracting from an array
Application 1: single element of an array

If we had array(l, xs) meaning a sequence of consecutive
points-to facts, we could prove array(l, xs) -* l |->
x[n] * (l + n |-> x[n] -* array(l, xs)) (if n is
in-bounds!). More fancy: prove array(l, xs) -* l |->
x[n] * (forall v, l + n |-> v -* array(l, <|n
:= v>| xs))

Extracting from a HashMap
Rust Entry API

https://doc.rust-lang.org/std/collections/hash_map/enum.Entry.html

