CS 839: Systems Verification
Lecture 8: Separation Logic (part 2)

this lecture will be mostly on the board

Learning outcomes

1. Appreciate why separation logic works
2. Be ready to think in separation logic

Recall: meaning of P * ()

Write down the definition from memory

Answer
(P * Q)(h) = E|h1, hz. (h = h1 U hz) N\ (hl J_hg) A\
P(h1) A Q(h2)

Recall: separation logic predicates
63%64*€2H62*£1H3

Separation logic rules

{emp} alloc v {\w. 3. [w = £] x £ — v} alloc-spec
{f — v}l {w. |w=wv|*{— v} load-spec

{€ — v} £ v {A_.L— v} store-spec

Now we get to the program logic part of separation logic,
reasoning about actual programs.

Frame rule

1P} e{rv.Q(v)}
{P*F}e{\.Qv)* F}

frame

Key to separation logic

Recall how in regular Hoare logic, we would prove a
specification for a function, then use it whenever needed by
adapting the pre- and post-condition with the rule of
consequence.

The frame rule lets us reason about a function over a "small
footprint" and then use it in a larger heap. It shows that in the
larger context, the function doesn't modify "anything else."

lllustrative
example of framing

suppose we've proven

{€1 = 0} f(41, &) {€1 — 42}

eown LI

let x := alloc 0 in

let y := alloc 42 in
f(z,y);

assert (!z == ly)

Proof outline for e,

Rewrite the code (in "A-normal form") to put !x and ly onto their
own lines, so the proof outline can be written clearly.

Exercise: prove swap correct

swap 51 62 n=lett = '61 in fl — !62; 62 —1

{x — a*xy+—> b}
swap Ty

{)_.:Bl—>b*y»—>a}

5-min break

Magic wand
P —xQ

There is another separation logic operator that turns out to be
useful to mechanize proofs in Rocq: the "magic wand", or more
formally the "separating implication".

Intuition for magic wand

If you remember only one thing about wand, remember P x (P —* Q) F Q.

Consider the Prop equivalent to get a sense for this as a form
of implication, but with separating conjunction rather than
regular conjunction

Characterization of magic wand

PH(Q—*R) <— P*xQFR

Exercise: defining magic
wand in the model

"if we extend the heap with P, then we get Q"

Answer
(P Q)(h) £ VH,(h LW)ANP(R) = Q(hUR)

Properties of wand

wand-elim

Px(P—>*Q)FQ

P*QFR
P+ (Q —~*R)

wand-intro

Wand implication

PP QF(Q
(P—*Q)F (P —* Q')

wand-impl

Extracting from an array

Application 1: single element of an array

If we had array(1, Xxs) meaning a sequence of consecutive
points-to facts, we could prove array(1l, xs) —-x 1 |->
x[n] * (1 + n |-> x[n] —x array(l, xs)) (ffnis
in-bounds!). More fancy: prove array (1, xs) —x 1 |->
x[n] x (forall v, 1 + n |-> v —x array(l, <|n
:= v>| xs))

Extracting from a HashMap
Rust Entry API

v dmpl<'a, K, V> Entry<'a, K, V> Source
v pub fn or_insert(self, default: V) -> &'a mut V 1.0.0 - Source
Ensures a value is in the entry by inserting the default if empty, and returns a mutable reference to the value in the entry.

Examples

use std::collections::HashMap;
let mut map: HashMap<&str, u32> = HashMap::new();

map.entry("poneyland").or_insert(3);
assert_eq! (map["poneyland"], 3);

*map.entry("poneyland").or_insert(10) *= 2;
assert_eq! (map["poneyland"], 6);

https://doc.rust-lang.org/std/collections/hash_map/enum.Entry.html

